Patterned activity via spinal dorsal quadrant inputs is necessary for the formation of organized somatosensory maps.

نویسندگان

  • Neeraj Jain
  • Pamela S Diener
  • Jacques-Olivier Coq
  • Jon H Kaas
چکیده

The normal development of the somatosensory system requires intact sensory inputs from the periphery during a critical window of time early in development. Here we determined how the removal of only part of the ascending spinal inputs early in development affects the anatomical and neurophysiological development of the somatosensory system. We performed spinal overhemisections in rat pups at C3/C4 levels on the third day after birth. This procedure hemisects the spinal cord on one side and transects the dorsal funiculus on the other side. When the rats were 6-8 months old, the responsiveness and somatotopy of the primary somatosensory cortex (S1) contralateral to the hemisection were determined using standard multiunit mapping techniques. Sections of the flattened cortex were processed for cytochrome oxidase activity, Nissl substance, or myelin. We found that histologically apparent modules that are normally present in the regions of the forepaw and the hindpaw representations were absent, whereas the lateral barrel field representing the face was completely normal. The neurons in the forepaw regions of S1 either did not respond to the stimulation of the skin of any region of the body or responded to the stimulation of the upper arm afferents that enter the spinal cord rostral to the site of the lesion. The results show that a lack of normal sensory inputs via ascending pathways in the dorsal spinal cord during early development results in massive anatomical and neurophysiological abnormalities in the cortex. Intact crossed spinothalamic pathways are unable to support the normal development of the forepaw barrels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of acute and chronic midthoracic spinal cord injury on neural circuits for male sexual function. I. Ascending pathways.

Normal male reproductive function, particularly ejaculation, requires the integrity of urogenital sensory input and its ascending spinal projections. After midthoracic chronic spinal cord injury, sexual dysfunction occurs in both rats and humans. Neurons in the medullary reticular formation (MRF) are involved in the processing of bilaterally convergent sensory inputs from multiple cutaneous, mu...

متن کامل

Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy.

When somatosensory cortex (S1) is deprived of some of its inputs after section of ascending afferents in the dorsal columns of the spinal cord, it reorganizes to overrepresent the surviving inputs. As somatosensory cortex provides guiding sensory information to motor cortex, such sensory loss and representational reorganization could affect the development of the motor map in primary motor cort...

متن کامل

Dynamic reorganization of digit representations in somatosensory cortex of nonhuman primates after spinal cord injury.

Somatosensory cortices of adult primates reactivate over time after sensory loss. The time course and the neural mechanisms underlying the cortical reactivation are not well understood. Here we report that longitudinal high-resolution functional magnetic resonance imaging (fMRI) studies on anesthetized squirrel monkeys revealed dynamic reorganizations of digit activations in area 3b, within 2 m...

متن کامل

Growth of new brainstem connections in adult monkeys with massive sensory loss.

Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representatio...

متن کامل

Action-based body maps in the spinal cord emerge from a transitory floating organization.

During development primary afferents grow into and establish neuronal connections in the spinal cord, thereby forming the basis for how we perceive sensory information and control our movements. In the somatosensory system, myriads of primary afferents, conveying information from different body locations and sensory modalities, get organized in the dorsal horn of the spinal cord so that spinal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 32  شماره 

صفحات  -

تاریخ انتشار 2003